COMMON PRE-BOARD EXAM MATH(041) - ANSWER KEY

	Section - A	
	Section A consists of 20 questions of 1 mark each.	
1.	(b) xy ²	1
2.	(a) 3	1
3.	(a) 20	1
4.	(c) Intersecting or coincident	1
5.	(b) 27	1
6.	(b) DE = 12 cm, ∠F = 100°	1
7.	(b) $\frac{DE}{DF} = \frac{FE}{RP}$	1
8.	(b) 70°	1
9.	(c) $(0, \frac{7}{2})$	1
10.	(d) IV quadrant	1
11.	(d) 90°	1
12.	(d) $5\frac{1}{3}$	1
13.	(c) 75 √3	1
14.	(c) 616 m ²	1
15.	(a) 0.36 cm ³	1
16.	(c) 30 – 40	1
17.	(b) 25	1
18.	(d) $\frac{25}{36}$	1
19.	Option (b) is correct	1
20.	Option (b) is correct	1
	Section – B	
	Section B consists of 5 questions of 2 marks each.	
21.	$X = \frac{4a^2 \pm \sqrt{(16b^4)}}{8}$	1
	$x = \frac{a^2 + b^2}{2}$ or $x = \frac{a^2 - b^2}{2}$	1
	OR	1
	$x^2 - 28x + 160 = 0$	1
22	x = 8 or x = 20	
22.	$\frac{PB}{PD} = \frac{PC}{PE}$	1
	ΔPBC ~ ΔPDE	1
23.	PB = PD	1

	AB = CD	1
24.	$\frac{1}{\frac{1}{\sqrt{2}}} + \frac{1}{2}$	1
	$\frac{1}{\sqrt{2}}$ 2	
	$2\sqrt{2}+1$	1
	OR	
	$\frac{\sin \theta}{\cos \theta} = \frac{1}{\sqrt{3}}$	1
	COS # V3	
	$\theta = 30^{\circ}$	1
25.	OA = OB = 6	1
	Area = 9.42 cm ²	1
	Section - C	
	Section C consists of 6 questions of 3 marks each.	
26.	$\sqrt{5} = \frac{p}{a}$	1/2
	$P^2 = 5q^2$	1/2
	$P^2 = 25r^2$	1/2
	Q is divisible by 5.	1/2
	v5 is an irrational number.	1
27.	$\alpha + 7\alpha = -\left(-\frac{8}{3}\right)$	1/2
1		1/2
	$\alpha = \frac{1}{3}$	1
	$7(\frac{1}{3})^2 = \frac{2k+1}{3}$	
	$K = \frac{2}{3}$	1
28.	Let the three consecutive natural numbers be x, x + 1 and x + 2.	1/2
	$(x + 1)^2 = (x + 2)^2 - (x)^2 + 60$	1
	x = 9 or x = -7	1 1/2
	Rejecting -7, we get x = 9	/2
	Three numbers are 9, 10 and 11.	
	OR	
	$x(x + \frac{a}{a+b}) + \frac{a+b}{a}(x + \frac{a}{a+b}) = 0$	1
	$\left(x + \frac{a}{a+b}\right)\left(x + \frac{a+b}{a}\right) = 0$	1
		1
	$X = \frac{-a}{a+b} \text{ or } \frac{-(a+b)}{a}$	
29.	AB = CD and AD = BC	1/2
	AP + PB + DR + CR = AS + BQ + DS + CQ	1 1/2
	AB + CD = AD + BC	1
	ABCD is a rhombus.	
	OR	
	Figure	1
	AB + BC + CA = 2AQ - BQ + BQ + CR - CR	1
	$AQ = \frac{1}{2} (BC + CA + AB)$	1

30.	$\frac{\cos\theta}{\sin\theta} + \frac{1}{\sin\theta} - 1$ $\frac{\cos\theta}{\sin\theta} - \frac{1}{\sin\theta} + 1$	1/2
	$\frac{\sin\theta(\cos\theta - \sin\theta + 1)}{\sin\theta(\cos\theta + \sin\theta - 1)}$	1/2
	$\frac{\sin\theta\cos\theta + \sin\theta - (1 - \cos^2\theta)}{\sin\theta(\cos\theta + \sin\theta - 1)}$	
	$=\frac{\sin\theta(\cos+1)-[(1-\cos\theta)(1+\cos\theta)]}{\sin\theta(\cos\theta+\sin\theta-1)}$	1
		1
31.	$= \frac{No.of\ favourable\ outcomes}{No.of\ all\ possible\ outcomes} = \frac{81}{90} = \frac{9}{10}$	1
	Perfect square numbers between 1 to 90 are	1
	1, 4, 9, 16, 25, 36, 49, 64, 81	
	$=\frac{9}{90}=\frac{1}{10}$	1
	Section - D	
	Section D consists of 4 questions of 5 marks each.	
32.	2(a + 17d) = 3(a + 10d)	1
	$\frac{s_5}{s_{10}} = \frac{5}{2} (2a + 4d)$ $\frac{10}{2} [2a + 9d]$	1
	The value of a = 4d	1
	$\frac{s_5}{s_{10}} = \frac{5}{2} (8d + 4d)$	1
	5(8d + 9d)	
	$\frac{12d}{34d} = \frac{6}{17}$	1
	OR	
	Total distance to be covered by thief = (100n) metres Total distances to be covered by policeman = $100 + 110 + 120 + + (n - 1)$ terms $\therefore 100n = \frac{n-1}{2} [200 + (n-2)10]$ $n^2 - 3n - 18 = 0$ $(n-6)(n+3) = 0$ $n = 6$ A policeman takes 6 minutes to catch the thief.	½ 1 1 ½ ½ ½ 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33.	Proof of the theorem	5

	1	ı
34.	Volume of water in cone = $\frac{1}{3} \pi r^2 h$	½ ½
	$=\frac{1}{3}\pi\times(5)^2\times8$	/2
	$=\frac{200}{3}\pi \text{ cm}^3$	1/2
	Volume of water flown out = $\frac{50}{3}\pi$ cm ³	1
	Let the radius of one spherical ball be r cm	1 1½
	$r = \frac{1}{2}$	_,_
	_	1
	= 0.5 cm OR	
		1
	Slant height of cone = 12.5 cm	1 1/2
	TSA of toy = $\pi rl + 2\pi r^2$	1
	$= \frac{22}{7} \times 12.5 \times 3.5 + 2 \times \frac{22}{7} \times 3.5 \times 3.5$	1½
	= 22 (6.25 + 3.5)	_
	= 214.5 cm ²	1
	∴Total surface area of toy is 214.5cm ²	
25	Table	4
35.	Table Modian = 22.5 modian class is 20 = 40	1
	Median = 32.5, median class is $30 - 40$.	1
	$32.5 = 30 + \frac{10}{12}(20 - 14 - f_1)$	
	$f_1 = 3$	1
	$f_1 + f_2 + 31 = 40$	4
	$f_2 = 6$	1
	Section - E	
	Case study based questions are compulsory.	
36.	X +2y = 16	1
	X + 6y = 22	1
	X + 4y = 16	_
	Additional charges is y = ₹ 3.	2
	OR Total = ₹ 50	2
37.	Distance between house and bank = 5 km	1
	Distance between bank and daughter's school = 10 km	1
	Distance between house to office = 24.6 km	
	Distance between daughter's school and office = 12 km	
	Total distance (house + Bank + School + Office) travelled = 5 + 10 + 12	
	= 27 km	2
38.	BD = AD - AB	
	= 3.7 m	1
	In ΔBDC,	
	$\sin 60^{\circ} = \frac{BD}{BC}$	_
	BC = 4.28 m (approx.)	1
	D ⊟	

In ΔBDC,	
and DC	1
$Cot 60^{\circ} = \frac{DC}{BD}$	
DC = 2.14 (approx)	1
OR	
	1
$\sin 30^{\circ} = \frac{BD}{BC}$	1
BC = 7.4m	