COMMON PRE-BOARD EXAM MATH(041) - ANSWER KEY		
	Section - A	
	Section A consists of $\mathbf{2 0}$ questions of 1 mark each.	
1.	(b) $x y^{2}$	1
2.	(a) 3	1
3.	(a) 20	1
4.	(c) Intersecting or coincident	1
5.	(b) 27	1
6.	(b) $D E=12 \mathrm{~cm}, \angle \mathrm{~F}=100^{\circ}$	1
7.	(b) $\frac{D E}{D F}=\frac{F E}{R P}$	1
8.	(b) 70°	1
9.	$\text { (c) }\left(0, \frac{7}{2}\right)$	1
10.	(d) IV quadrant	1
11.	(d) 90°	1
12.	(d) $5 \frac{1}{3}$	1
13.	(c) 75 V 3	1
14.	(c) $616 \mathrm{~m}^{2}$	1
15.	(a) $0.36 \mathrm{~cm}^{3}$	1
16.	(c) $30-40$	1
17.	(b) 25	1
18.	(d) $\frac{25}{36}$	1
19.	Option (b) is correct	1
20.	Option (b) is correct	1
	Section - B	
	Section B consists of 5 questions of 2 marks each.	
21.	$\begin{aligned} & \mathrm{x}=\frac{4 a^{2} \pm \sqrt{ }\left(16 b^{4}\right)}{8} \\ & \mathrm{x}=\frac{a^{2}+b^{2}}{2} \text { or } \mathrm{x}=\frac{a^{2}-b^{2}}{2} \\ & \mathrm{x}^{2}-28 \mathrm{x}+160=0 \\ & \mathrm{x}=8 \text { or } \mathrm{x}=20 \end{aligned}$	1 1 1 1
22.	$\frac{P B}{P D}=\frac{P C}{P E}$ $\triangle \mathrm{PBC} \sim \triangle \mathrm{PDE}$	1 1
23.	$\mathrm{PB}=\mathrm{PD}$	1

\begin{tabular}{|c|c|c|}
\hline \& AB \(=C D\) \& 1 \\
\hline 24. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \frac{1}{\frac{1}{\sqrt{2}}+\frac{1}{2}} \\
\& \frac{2 \sqrt{2}+1}{2}
\end{aligned}
\] \\
OR
\[
\frac{\sin \theta}{\cos \theta}=\frac{1}{\sqrt{3}}
\]
\[
\theta=30^{\circ}
\]
\end{tabular} \& 1
1
1
1 \\
\hline 25. \& \[
\begin{aligned}
\& \mathrm{OA}=\mathrm{OB}=6 \\
\& \text { Area }=9.42 \mathrm{~cm}^{2}
\end{aligned}
\] \& 1 \\
\hline \& Section - C \& \\
\hline \& Section \(\mathbf{C}\) consists of 6 questions of 3 marks each. \& \\
\hline 26. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{V} 5=\frac{p}{q} \\
\& \mathrm{P}^{2}=5 \mathrm{q}^{2} \\
\& \mathrm{P}^{2}=25 \mathrm{r}^{2}
\end{aligned}
\] \\
\(Q\) is divisible by 5 . \\
V5 is an irrational number.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1 \\
\hline 27. \& \[
\begin{aligned}
\& \alpha+7 \alpha=-\left(-\frac{8}{3}\right) \\
\& \alpha=\frac{1}{3} \\
\& 7\left(\frac{1}{3}\right)^{2}=\frac{2 k+1}{3} \\
\& K=\frac{2}{3}
\end{aligned}
\] \& \(1 / 2\)
\(1 / 2\)
1

1 \\

\hline 28. \& | Let the three consecutive natural numbers be $\mathrm{x}, \mathrm{x}+1$ and $\mathrm{x}+2$. $\begin{aligned} & (x+1)^{2}=(x+2)^{2}-(x)^{2}+60 \\ & x=9 \text { or } x=-7 \end{aligned}$ |
| :--- |
| Rejecting -7 , we get $x=9$ |
| Three numbers are 9, 10 and 11. |
| OR $\begin{aligned} & \mathrm{x}\left(\mathrm{x}+\frac{a}{a+b}\right)+\frac{a+b}{a}\left(\mathrm{x}+\frac{a}{a+b}\right)=0 \\ & \left(\mathrm{x}+\frac{a}{a+b}\right)\left(\mathrm{x}+\frac{a+b}{a}\right)=0 \\ & \mathrm{x}=\frac{-a}{a+b} \text { or } \frac{-(a+b)}{a} \end{aligned}$ | \& $1 / 2$

1
1
$11 / 2$

1

1
1 \\

\hline 29. \& | $\begin{aligned} & A B=C D \text { and } A D=B C \\ & A P+P B+D R+C R=A S+B Q+D S+C Q \\ & A B+C D=A D+B C \end{aligned}$ |
| :--- |
| $A B C D$ is a rhombus. |
| Figure $\begin{aligned} A B+B C+C A & =2 A Q-B Q+B Q+C R-C R \\ A Q & =\frac{1}{2}(B C+C A+A B) \end{aligned}$ | \& $1 / 2$

1
$1 / 2$
1

1
1 \\
\hline
\end{tabular}

30.	$\begin{aligned} & \frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}-1 \\ & ---------- \\ & \frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}+1 \\ & \frac{\sin \theta(\cos \theta-\sin \theta+1)}{\sin \theta(\cos \theta+\sin \theta-1)} \\ & \frac{\sin \theta \cos \theta+\sin \theta-\left(1-\cos ^{2} \theta\right)}{\sin \theta(\cos \theta+\sin \theta-1)} \\ & =\frac{\sin \theta(\cos +1)-[(1-\cos \theta)(1+\cos \theta)]}{\sin \theta(\cos \theta+\sin \theta-1)} \end{aligned}$	$1 / 2$ $11 / 2$ 1 1 1
31.	$=\frac{\text { No.of favourable outcomes }}{\text { No.of all possible outcomes }}=\frac{81}{90}=\frac{9}{10}$ Perfect square numbers between 1 to 90 are $\begin{gathered} 1,4,9,16,25,36,49,64,81 \\ =\frac{9}{90}=\frac{1}{10} \end{gathered}$	1 1 1
	Section - D	
	Section D consists of 4 questions of 5 marks each.	
32.	$\begin{gathered} 2(a+17 d)=3(a+10 d) \\ \frac{s_{5}}{s_{10}}=\frac{5}{2}(2 a+4 d) \\ ---\cdots------ \\ \frac{10}{2}[2 a+9 d] \end{gathered}$ The value of $a=4 d$ $\begin{aligned} & \frac{s_{5}}{s_{10}}=\frac{5}{2}(8 \mathrm{~d}+4 \mathrm{~d}) \\ & \\ & --\cdots-\cdots------- \\ & \frac{12 d}{34 d}= \end{aligned}$ OR Total distance to be covered by thief $=(100 n)$ metres Total distances to be covered by policeman $=100+110+120+\ldots+(n-1)$ terms $\begin{aligned} & \therefore 100 n=\frac{n-1}{2}[200+(n-2) 10] \\ & n^{2}-3 n-18=0 \\ & (n-6)(n+3)=0 \\ & n=6 \end{aligned}$ A policeman takes 6 minutes to catch the thief.	
33.	Proof of the theorem	5

\begin{tabular}{|c|c|c|}
\hline 34. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Volume of water in cone }=\frac{1}{3} \pi r^{2} \mathrm{~h} \\
\& \\
\& =\frac{1}{3} \pi \times(5)^{2} \times 8 \\
\& \\
\& =\frac{200}{3} \pi \mathrm{~cm}^{3}
\end{aligned}
\] \\
Volume of water flown out \(=\frac{50}{3} \pi \mathrm{~cm}^{3}\) \\
Let the radius of one spherical ball be rcm
\[
\begin{aligned}
r \& =\frac{1}{2} \\
\& =0.5 \mathrm{~cm}
\end{aligned}
\] \\
Slant height of cone \(=12.5 \mathrm{~cm}\)
\[
\begin{aligned}
\text { TSA of toy } \& =\pi r l+2 \pi r^{2} \\
\& =\frac{22}{7} \times 12.5 \times 3.5+2 \times \frac{22}{7} \times 3.5 \times 3.5 \\
\& =22(6.25+3.5) \\
\& =214.5 \mathrm{~cm}^{2}
\end{aligned}
\] \\
\(\therefore\) Total surface area of toy is \(214.5 \mathrm{~cm}^{2}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1
1
\(11 / 2\)

1

1
$1 / 2$
1
$11 / 2$

1 \\
\hline 35. \& Table

$$
\begin{aligned}
& \text { Median }=32.5, \text { median class is } 30-40 . \\
& 32.5=30+\frac{10}{12}\left(20-14-f_{1}\right) \\
& f_{1}=3 \\
& f_{1}+f_{2}+31=40 \\
& f_{2}=6
\end{aligned}
$$ \& 1

1
1
1
1 \\
\hline \& Section - E \& \\
\hline \& Case study based questions are compulsory. \& \\

\hline 36. \& | $\begin{aligned} & x+2 y=16 \\ & x+6 y=22 \\ & x+4 y=16 \end{aligned}$ |
| :--- |
| Additional charges is $\mathrm{y}=₹ 3$. $\text { Total = ₹ } 50$ | \& 1

1
2
2 \\

\hline 37. \& | Distance between house and bank $=5 \mathrm{~km}$ |
| :--- |
| Distance between bank and daughter's school $=10 \mathrm{~km}$ |
| Distance between house to office $=24.6 \mathrm{~km}$ |
| Distance between daughter's school and office $=12 \mathrm{~km}$ |
| Total distance (house + Bank + School + Office) travelled =5+10+12 $=27 \mathrm{~km}$ | \& 1

1

2 \\

\hline 38. \& | $\begin{aligned} \mathrm{BD} & =\mathrm{AD}-\mathrm{AB} \\ & =3.7 \mathrm{~m} \end{aligned}$ |
| :--- |
| In $\triangle B D C$, $\operatorname{Sin} 60^{\circ}=\frac{B D}{B C}$ $\mathrm{BC}=4.28 \mathrm{~m} \text { (approx.) }$ | \& 1

1 \\
\hline
\end{tabular}

In $\triangle \mathrm{BDC}$,		1
$\operatorname{Cot} 60^{\circ}=\frac{D C}{B D}$	OR	1
$D C=2.14$ (approx..)		1
$\operatorname{Sin} 30^{\circ}=\frac{B D}{B C}$	1	
$B C=7.4 \mathrm{~m}$		

